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Abstract: Light is very important for photosynthesis in plants. However, excess light can result in photodamage to the 

photosynthetic apparatus. Via nonphotochemical quenching (NPQ), the oxidative stress caused by excess light energy can be 

counteracted by photoprotective mechanisms that evolve photosynthetic/oxygenic organisms. Energy-dependent quenching 

(qE), as the major NPQ component, relies on the accumulation of specific proteins that are termed light-harvesting complex 

stress-related (LHCSR) proteins in microalgae and mosses. LHCSRs have been reported to participate in adaptation to diverse 

environmental stresses, including excess light. In this review, we discuss the identification of LHCSRs in Chlamydomonas and 

the basic biochemical properties and functions of LHCSRs in acclimation to environmental stresses such as excess light and 

salt stress. We further review the potential interactive factors and upstream regulators of LHCSRs in Chlamydomonas, aiming 

to explore the underlying mechanism of LHCSRs in adaptation to multiple environmental stresses. We also discuss the 

evolution of LHCSRs in green algae and mosses and tentatively speculate about their participation in the adaptation to 

environmental change of the Earth. Work on Chlamydomonas LHCSR could provide clues to analyze the roles of LHCSR in 

both green algae and mosses. Thus, we offer an overview of current knowledge on the characteristics and functions of 

Chlamydomonas LHCSRs, which could shed new light on their detailed studies in both green algae and moss in the future. 
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1. Introduction 

Algae, unicellular organisms with no roots and other 

nonphotosynthetic organs, are very efficient in converting 

solar energy into biomass. Although higher plants and 

microalgae share the same basic functions of photosynthesis 

[1], microalgae do not need arable soils for their growth and 

have no competitive relation with food crops. Microalgae are 

highly rich in lipids, and over 50% of their dry biomass is 

lipids [2]. However, the use of microalgae to produce biomass 

remains limited, reducing cost-effectiveness. 

Microalgae have low light utilization efficiency due to 

energy dissipation at high solar energy. Although the maximal 

theoretical efficiency of photosynthetically active radiation 

(PAR, 400-700 nm) solar energy conversion to biomass is 

approximately 27%, the actual efficiency of solar energy 

conversion to biomass in laboratory-scale growth tests is less 

than 6% [3]. One of the most important reasons is the uneven 

distribution of light in algal culture. Insufficient light into cells 

in the deeper layers results in respiratory loss, while 

photoinhibition occurs in surface cells exposed to strong light 

[4]. Excess light induces photoprotective mechanisms via 
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nonphotochemical quenching (NPQ), which relies on 

light-harvesting complex stress-related (LHCSR) proteins in 

microalgae. To provide a whole picture of LHCSRs in 

acclimation to environmental stress, we will review the recent 

progress on their biochemical characteristics, functions and 

underlying regulatory mechanisms in Chlamydomonas. 

LHCSRs are widely distributed in most algae and mosses 

but absent in higher plants [5]. Here, we also analyze the 

distribution and evolutionary relationship of LHCSRs in green 

algae and moss, aiming to trace their conserved functions. 

Based on these results, we present the future prospects of 

studies on acclimation to environmental stress fulfilled by 

LHCSRs, which may be applied in food crop resistance in the 

future. 

2. Photoprotective Systems in Microalgae 

Light is essential for photosynthesis. Previous studies 

indicate that a considerable amount of light-harvesting 

complex (LHC) proteins play important roles in light 

harvesting [6]. Three helices contained in LHC proteins are 

typically thylakoid transmembrane and bind lipid molecules, 

chlorophyll, and carotenoids [7]. Although photosynthesis 

depends on light, excess light could cause overexcitation of 

the photosynthetic apparatus and then produce highly active 

molecules or byproducts that could damage microalgae [8]. 

Fortunately, a variety of photoprotective mechanisms have 

been developed in microalgae to relieve photodamage, among 

which NPQ of chlorophyll (Chl) a fluorescence plays the most 

important role. In contrast to the inherent NPQ in higher plants, 

NPQ is manifested as a result of acclimation in 

Chlamydomonas under high light conditions [9]. The 

transcript of the LI818 gene, which encodes LHCSR proteins, 

is a mRNA induced by light [10]. The expression pattern of 

LI818 is different from those of most of any other genes 

encoding LHCs [11], which suggests its functions in addition 

to light harvesting. Since then, a series of studies have 

demonstrated that LHCSRs mainly function in the 

photoprotection process in microalgae exposed to excess light 

[12]. In contrast to photosystem II subunit S (PsbS), which is 

employed to activate NPQ in higher plants, LHCSRs are 

adopted in the same process by microalgae [5, 13]. Although 

PsbS has also been identified in microalgae, it is not as 

important for the protection of the photosynthetic apparatus as 

in higher plants but important for the transient response to 

high light [14]. 

In Chlamydomonas, the family of LHCSRs is composed of 

LHCSR1 and LHCSR3, which are encoded by LHCSR1 

(Cre08.g365900) and LHCSR3.1 (Cre08.g367500) \ 

LHCSR3.2 (Cre08.g367400), respectively. The 

Chlamydomonas npq4 mutant was screened out using 

chlorophyll fluorescence. LHCSR3.1 and LHCSR3.2 were 

initially identified to be responsible for the energy-dependent 

quenching (qE)-deficient phenotype [9]. With the mutation of 

a homologous gene, LHCSR1, in the npq4 background, qE 

was completely inactivated in the Chlamydomonas triple 

mutant [5]. This evidence supports the possibility of the 

functions of LHCSR1, LHCSR3.1 and LHCSR3.2 in 

photoprotection. 

Further studies indicate that the transcripts of LHCSRs 

accumulate in cells under photooxidative stress, including 

excess light [15], CO2 [16], sulfur [17] or iron [18] deprivation, 

suggesting their roles in acclimation to environmental stress. 

Detailed studies have revealed that the polypeptide sequences 

of LHCSR3.1 and LHCSR3.2 are identical, but they have 

different promoter sequences and 3'UTR regions, 

demonstrating their different regulatory mechanisms to adapt 

to stress [19]. More interestingly, although the 3D structures 

of LHCSR1 and LHCSR3 are very similar (Figures 2A, B, C), 

LHCSR1 is reported to have a weaker quenching ability than 

LHCSR3, possibly because of their different binding sites 

with L2 carotenoids [20], suggesting their different 

biochemical activities. 

3. Nonphotochemical Quenching and Its 

Components 

Plants are exposed to different amounts of light in different 

environments. Algae live in water with a lack of ultraviolet, red 

and an abundance of blue wavelengths. Algae grown in aquatic 

environments are usually exposed to low light conditions, and 

fluctuating light may bring photoinhibition. [21]. 

Excess light triggers many quenching reactions of 

chlorophyll fluorescence, and more reactions could be 

uncovered with the development of capture and detection 

technology in the future. NPQ, as the major and fastest form of 

chlorophyll fluorescence-quenching reactions, mainly occurs 

within the antenna system of photosystem II. LHCSRs are the 

most important parts of microalgae (Figure 1A). NPQ is 

comprised of several components, and they are reported to 

have different degrees of importance depending on the 

microalgae species and physiological states. There are several 

steps in NPQ, including qE (fast phase), qZ and qT (middle 

phase), and qI (slow phase) [22]. Among them, qE is the most 

unique component of NPQ [23], can be activated reversibly 

within seconds along with light intensity and has the highest 

quenching ability. 

In higher plants, qE is combined with a quenching 

component that is zeaxanthin dependent and triggered by low 

lumenal pH [24]. Zeaxanthin is the enhancer of qE, which can 

also be triggered by low lumenal pH. The initial synthesis of 

zeaxanthin originates from violaxanthin de-epoxidase 

activation, which is located in the lumen. The V1 site and L2 

site of LHCII have the ability to bind newly synthesized 

zeaxanthin [25-29]. After exposure to low light, zeaxanthin is 

catalyzed back to violaxanthin by zeaxanthin epoxidase [30]. 

Then, qE is triggered by the specific amino acid protonation of 

acidified photosystem II (PSII) proteins that are exposed to the 

thylakoid lumen. 

Photosynthetic organisms contain several xanthophyll cycles, 

including the lutein epoxide cycle, diadinoxanthin cycle and 

violaxanthin cycle. The lutein epoxide cycle only exists in some 

higher plant families. The diadinoxanthin cycle mainly exists in 
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species such as Bacillariophyceae, Xanthophyceae, 

Haptophyceae, and Dinophyceae. The violaxanthin cycle of 

brown algae and green algae is the same as that of higher plants 

[31]. However, the relationship between the violaxanthin cycle 

and NPQ in algae varies with species. For example, the NPQ of 

Chlorella vulgaris, Chlorella saccharophila and Bracteacoccus 

minor was dependent on zeaxanthin, while the violaxanthin 

de-epoxidation of Pedinomonas minor, Tetracystis aeria and 

Chlamydomonas was not closely associated with NPQ [32, 33]. 

The activation mechanisms of qE are not fully conserved 

among species, which makes species-specific responsiveness 

dependent on both the protonation of responsive PSII proteins 

and the involvement of the xanthophyll cycle [5, 13]. PsbS 

was reported to be responsible for qE activation in vascular 

plants two decades ago [13], and LHCSRs confer the same 

function in microalgae [5]. Interestingly, both LHCSRs and 

PsbS are active in qE in Physcomitrella patens, which 

diverged early from the green algae to the higher plant [34]. 

 

Figure 1. Model for qE in microalgae. Schematic of LHCSR-dependent NPQ in Chlamydomonas reinhardtii. Energy transfer to the S1 state of carotenoids and 

electron transfer from carotenoids to chlorophyll are enhanced under high light conditions, and epoxidation reactions are reversed under limited light. LHCBM1 

is proposed to be an LHCSR docking site. This picture is modified from Niyogi and Truong (2013) [35]. (B) Microalgae model of PSI and PSII fluorescence 

quenching dependent on LHCSR. No clear boundary among grana, margins, and stromal thylakoids is observed in algal chloroplasts. LHCSRs participate in the 

dissipation of excess energy in both PSII and PSI by quenching the associated LHCII antenna. This picture is modified from Pinnola (2019) [36]. 

4. LHCSRs and Their Biochemical 

Characteristics in Microalgae 

LHCSRs participate in the initial activation of qE in 

microalgae [5, 9]. However, it is difficult to isolate grana domains 

of unicellular algae, so the LHCSR location is still unclear [37]. It 

is speculated that LHCSRs independently catalyze the quenching 

of PSI-LHCI-LHCII complexes (in stroma-exposed domains) 

and PSII-LHCII (in grana membranes). This mechanism 

maintained the plastoquinone redox poise and controlled both 

PSI and PSII antenna system excitation in the short of far-red 

absorption forms of PSI (Figure 1B). 

The binding of LHCSR3 to PSI or PSII is modulated by 

light conditions in Chlamydomonas [37, 38]. Energy transfer 

to the S1 state of carotenoids and electron transfer from 

carotenoids to chlorophyll are enhanced under low pH 

conditions (Figure 1A) [39]. LHCSR3 may act as an energy 
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quencher considering that it could bind pigments and has a 

state transition with a short fluorescence lifetime [9, 40]. The 

dissipative states are reversibly activated at low pH, which 

enables organisms to adapt to stepwise changes in solar 

irradiance. Moreover, LHCSR3 loss causes an increase in the 

Chl a/Chl b ratio, indicating that some reconfiguration occurs 

in the antenna [5]. 

The LHCSR1 conformation that controls the transition 

changes rapidly between dissipative states. [41]. The 

LHCSR1 lifespan of the quenched conformations is 80 ps, and 

the unquenched conformation is 3.7 ns, indicating that 

unquenched LHCSR1 only acts as a regular light-catching 

antenna but competes with excitation trapping in the 

quenching state [42]. 

Thus, this evidence supports that multiple biochemical 

characteristics of LHCSRs make them respond to possible 

environmental stress in microalgae. 

5. LHCSRs Play Roles in Acclimation to 

Environmental Stresses 

LHCSRs were first identified in mutant screening in which 

strains were exposed to high light [5], indicating that LHCSRs 

could be induced by such stress. Joliot and Finazzi further 

demonstrated the possible mechanism: the Calvin cycle is 

saturated, resulting in the lack of both ADP and PI under high 

light conditions. Thus, the activity of ATPase is progressively 

inhibited, leading to the accumulation of H
+
 and a decreased 

pH value in the stroma, and low pH further induces qE [43]. 

Intensive studies provide clues on the characteristics of 

LHCSRs in response to excess light. Similar to known LHC 

proteins, LHCSRs are embedded into the thylakoid membrane 

[20]. Unlike PsbS, LHCSRs form complexes with Chl a, Chl b, 

lutein and Vio/Zea [9]. 

 

Figure 2. Model structure of LHCSR1 and LHCSR3. Structural model of LHCSR3 obtained by sequence alignment with Chl a/b binding protein (PDB 6zzx.1.T). 

(B) Structural model of LHCSR1 obtained by sequence alignment with Chl a/b binding protein (PDB 6zzy.1.S). (C) Structural alignment of LHCSR3 (violet) and 

LHCSR1 (cyan). (D) Enlargement of the Chl a binding site region with the LYS-190 and ASN-194 residues predicted in LHCSRs to be in close contact with the 

Chl a molecule. Molecular graphics was performed with PyMOL software. 

3D model prediction of LHCSR proteins confirms that they 

can bind to Chl a, and the binding sites are LYS-190 and 

ASN-194. Unlike most LHC proteins, the site selectivity of 

LHCSRs is less strict, and other pigment-specific binding sites 

of LHCSRs could not be confirmed (Figure 2D). 

LHCSRs respond to low pH depending on the exposure of 

their glutamate/aspartate residues to the cavity [9, 44]. 

Biochemical and spectral analysis showed that as pH-sensitive 

proteins, 
1 

Chl*-binding LHCSRs could be catalytically 

decomposed and quenched under acidic conditions, and the 

excitation energy could be quenched by the charge transfer 

mechanism of photosynthetic pigments [20]. 

Unlike most of the LHC proteins, the lifetime of 

chlorophyll fluorescence of LHCSRs is unusually not very 

long and even shorter under low pH conditions, indicating that 

the protein adopts active energy-dissipation mechanisms that 

make it suitable for the transfer between proton sensing and 

quenching reactions. The active energy dissipation 

mechanism of LHCSR allows quenching to be active even 

under limited illumination conditions, and the quenching 

activity may be enhanced by acidic residue protonation of the 

protein. Therefore, the expression of LHCSR is usually kept at 

a low level under limited light conditions to avoid unnecessary 

quenching reactions [9, 45, 46]. Based on the quenching 

characteristics of the LHCSR3 subunit mentioned above, 

scientists have proposed a variety of underlying mechanisms, 

including energy transference of carotenoids, formation of 

carotenoid radical cations, carotenoid-chlorophyll charge 

transfer, and the induction of chlorophyll-chlorophyll charge 

transfer [39]. 

In addition to the quenching effect of the PSII antenna, 

LHCSRs also catalyze the quenching of PSI by affecting 

PSI-related LHCII complexes in mosses and algae [46, 47]. In 

obtaining excitation energy from a light trapping system [9, 44, 

48], LHCSRs interact with other antenna system components, 

such as CP26 [49] or LHCBM1 [40, 50]. 

In addition to excess light, LHCSR3 was also observed to 

accumulate when the cells were exposed to carbon dioxide 

deprivation [19, 51] or high salinity or nitrogen starvation 

conditions [14]. Under the stress conditions mentioned 

above, reactive oxygen species are generated to an 

abundant level, which may activate the expression of 

LHCSRs (Figure 3). Without LHCSRs, the release of 

singlet oxygen is increased, which results in damage to PSII 

[52]. Therefore, the present evidence supports that there is a 

close relationship between LHCSRs and reactive oxygen 

species, and the fine-tuning mechanism still remains to be 

explored. 
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Figure 3. Schematic diagram showing the expression of LHCSRs activated by 

stress conditions. Under stress conditions, reactive oxygen species are 

generated at an abundant level, which may activate the expression of 

LHCSRs. 

6. The Underlying Regulation 

Mechanism of LHCSRs 

LHCSRs accumulate at various levels under high light stress, 

indicating that they are differentially regulated by the 

underlying mechanism. In particular, the transcripts of 

LHCSR3.1 and LHCSR3.2 both accumulate at much higher 

levels than that of LHCSR1, suggesting that LHCSR3 may play 

a more important role and be greatly upregulated under high 

light [53]. However, LHCSR1 can partially compensate for the 

phenotype of the Chlamydomonas npq4 mutant [5], 

demonstrating its role in NPQ, although it is not as important as 

LHCSR3. This evidence reveals that the expression of LHCSRs 

could be precisely regulated by the fine-tuning system. 

Light signals and light utilization can be interlinked by 

LHCSRs and photoreceptors, which is supported by the 

evidence that both LHCSRs and qE are induced by ultraviolet 

light [54] and blue light [55], uncovering the relationship 

between light signals and energy utilization. Photoreceptors, 

such as UVR8 [54, 56] and phototropin (PHOT) [55], are 

required to induce the expression of LHCSRs and the 

occurrence of qE. Interestingly, the expression of LHCSR3 is 

modulated by the photoreceptor PHOT and photosynthesis [19, 

55, 57], while the expression of LHCSR1 is controlled by 

UVR8 and is independent of photosynthesis [19]. Since 

ultraviolet light can damage both the PSI and PSII systems, 

LHCSR1, as the UVR8 responser, may participate in the 

quenching of both photosystems in vivo [46, 58, 59]. 

Once the light signal is captured by the photoreceptors, the 

downstream regulation of the LHCSRs is activated via the 

conserved E3 ubiquitin ligase complex through CrCO, which 

is homologous to the plant transcription factor (CONSTANS, 

CO) [60]. CrCO can be targeted by both the COP1-SPA1 and 

DET1-DDB1 pathways (Figure 4). 

 

Figure 4. Schematic model of the expression of LHCSRs regulated by the ubiquitin ligase complex in Chlamydomonas. Under high light conditions, the activity 

of both the COP1-SPA1 E3 ubiquitin ligase and DDB1-DET1 E3 ubiquitin ligase is inhibited. This enables the accumulation of trans-acting factors and their 

binding to cis-acting elements to activate the transcription of LHCSR, but the specific factor X remains to be identified. CUL4: a cullin-based ring-type ubiquitin 

E3 ligase complex type 4; RBX1: a small ring finger protein. 

6.1. COP1-SPA1 Pathway 

The expression of LHCSRs can be regulated in acclimation 

to various light conditions through the COP1-SPA1 pathway. 

Under low light conditions, CrCO can be ubiquitinated and 

degraded by the COP1-SPA1 E3 ubiquitin ligase complex in 

Chlamydomonas, which results in reduced expression of 

LHCSRs (LHCSR1, LHCSR3.1 and LHCSR3.2). When algae 

are transferred to high light conditions, the COP1-SPA1 E3 

ubiquitin ligase is inhibited by photoreceptor-mediated 

signaling through an unclear mechanism, which allows CrCO 

accumulation and binding with a CO-like binding motif, 

resulting in the activation of LHCSRs [61]. 

6.2. DET1-DDB1 Pathway 

DDB1 (Cre10. g432000) and DET1 (Cre13. g571560) are 

two subunits of the CUL4-DDB1 DET1 E3 ligase complex, 

and their defects lead to the accumulated transcription of 

LHCSR1 and LHCSR3 in the dark, which is similar to the lack 

of CRL4 
COP1 SPA1

 [62]. The results from vascular plants and 

mammals indicate the possible mechanism of the 

CUL4-DDB1 DET1 system [63]. DDB1 and DET1 are 

thought to be part of the cullin-based ring E3 ubiquitin ligase 

complex 4 (CRL4). As a central scaffold subunit, the carboxyl 

termini of the Cullin protein bind to RBX1 (a small RING 

finger protein), and aminoa termini bind to the substrate 
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receptor module (e.g., DET1). The substrate receptor motif 

and the central scaffold subunit were connected by DDB1. 

The CRL4-DET1 complex (CRL4
 DET1

) is an E3 ligase in 

Arabidopsis that negatively regulates the critical 

developmental stages in different organisms [64] or works in 

conjunction with another E3 ligase in regulating plant 

photomorphogenesis [65]. 

Both of the above E3 ligase complexes may target CrCO, or 

they may have different substrates to coregulate the 

expression of qE-related genes [62]. Thus, the expression of 

LHCSRs is precisely regulated starting from the initial 

photoreception of the cells and throughout transcription, even 

though translation or posttranslation still remains to be 

identified. 

7. Distribution and Evolution of 

LHCSRs in Algae 

LHC proteins with three transmembrane helices are 

assumed to evolve from two-helix progenitors [66]. These 

LHC proteins may appear after the differentiation of green and 

red algae because there are no such proteins in glaucophytes 

[67]. LHCSRs have three transmembrane helices that are 

typical characteristics of the LHC superfamily, and they may 

follow the same evolutionary history. 

LHCSRs are widely distributed in mosses, green algae, 

haptophytes, photosynthetic apicomplexan (Chromera velia) 

and photosynthetic stramenopiles [68] but absent in 

dinoflagellates [69], red algae, cryptophytes [70] and vascular 

plants [5]. Some reasons are suggested to explain the 

distribution pattern of LHCSRs mentioned above. Analysis of 

ancient origin suggests that LHCSRs are lost in red algae [71], 

but genes may transfer horizontally between green algae and 

secondary red algae, which is related to red plastid acquisition 

[72]. However, phylogenetic analysis indicates an opposite 

direction of gene transference, from red plastids containing 

lineages to green algae and plants [70]. This result is also 

supported by other studies [73, 74]. Although the timing 

seems questionable at first glance, Dittami et al. suggest that 

the window of opportunity occurred 200 million years ago [70] 

after secondary red algae and before green lineage 

diversification [36]. Therefore, the evolution of LHCSRs 

remains to be explored to explain their distribution in algae 

species. 

LHCSR proteins have high efficiency in catalytic 

quenching reactions [5, 9]. However, in the course of 

evolution, they were replaced by PsbS. There are many 

differences between PsbS and LHCSR, such as quenching 

response mechanisms, thylakoid membrane localization, 

and interactions with other proteins. LHCSR has both 

quenching and pH sensing functions, while a single PsbS 

sensor can promote the quenching of multiple different 

LHC proteins [35]. PsbS is located in grana in mosses and 

vascular plants, [47, 75], concordant with its PSII 

quenching. However, LHCSR is limited to the stromal 

membrane [47], and the PSII supercomplex is quenched 

directly by LHCSR only if it is exposed at the stromal 

margins. In algae and mosses, the overall proportion of PSII 

protected by LHCSR quenching is approximately 30%, and 

most of the PSII is unprotected [76]. Therefore, the 

localization of LHCSR in PSII-rich stromal membranes is 

not particularly suitable for protecting PSII under excessive 

light conditions. 

In the stroma, PSI is quenched by LHCSR through LHCII 

[46, 47]. Although PSII reaction centers are limited to grana in 

mosses, LHCII is evenly distributed between stromal 

membranes and grana [47], and LHCII in stromal membranes 

helps regulate the size of the PSI antenna to offset the 

overreduction and charge recombination of PSII [77]. In green 

algae, LHCSR also transfers excitation energy to PSI through 

multiple LHCII complexes [78]. In summary, the main target 

of algal NPQ is PSI-associated LHCII of the stroma, which is 

colocalized with LHCSR. 

Early land plants were directly exposed to sunlight [21], 

while with the emergence of vascular plants, the sunlight 

exposure of different plants depended on the degree of 

shading. Ultraviolet and blue light under shadows are 

consumed, and far-red and green light are enriched [79]. As 

the intensity and angle of sunlight change, plants may be 

exposed to suddenly increased light and produce 

photoinhibition effects [80]. The absorption efficiency of 

redshifted LHCI is much higher than that of LHCII, which 

reduces the overexcitation of PSI in high light, resulting in 

redundant LHCII and LHCSR in stromal membranes. PsbS 

can replace algae LHCSR and induce NPQ in vascular plants 

because both PsbS and PSII are located in the grana, where 

PsbS can enhance the photoprotective energy dissipation and 

repair rate of PSII [81]. In conclusion, during plant evolution, 

LHCSR was gradually replaced by PsbS, which is more 

suitable for terrestrial environments. 

8. Future Research Prospects 

Plant energy dissipation mechanisms limit growth but 

enhance photoprotection to avoid photoinhibition. 

Photosynthetic organisms have evolved the ability to 

dissipate excess solar energy as heat under high light 

conditions. A study has shown that under limited light, the 

biomass accumulation rates of Arabidopsis thaliana with 

insufficient or excessive energy dissipation increased or 

decreased, respectively, indicating an inverse relationship 

between energy dissipation and growth [82]. Additionally, 

increasing the NPQ relaxation rate of tobacco reduces its 

overall heat dissipation and significantly increases biomass 

yield under field conditions [83]. However, no consistent 

results have been obtained in studies of the energy 

dissipation of algae. Perozeni et al found that 

Chlamydomonas npq4 mutants grew faster than the wild type 

in photobioreactors [84], while other experiments showed 

the opposite results [53, 85]. 

In single-celled algae, energy dissipation is catalyzed by 

pigment-bound LHCSR proteins [9]. qE is induced by 

pigment-free PsbS proteins in higher plants [86-88]. LHCSR 
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and PsbS are located in different domains in the thylakoid 

membrane. PsbS and PSII are located together in the granum 

membrane [89-91], while LHCSR is located in the stromal 

membrane and can act on PSI and PSII [46, 47]. 

LHCSRs are the major components of NPQ in 

Chlamydomonas [5], and studies have been conducted to infer 

their physical and chemical properties [37, 42], stress response 

[20, 52], and gene regulatory mechanism [61, 62]. However, 

there are still many questions to be answered in understanding 

the action mechanism of LHCSRs. The expression of LHCSRs 

has been shown to be regulated from the initial photoreception 

to the transcription level, but the downstream regulatory 

network after transcription remains to be clarified. In 

particular, there is no information about the interacting 

proteins of LHCSRs at the translation level and transportation 

to the thylakoid membrane. Whether LHCSR could be 

transported into the thylakoid membrane in the liquid phase 

remains to be identified. How LHCSRs are degraded when 

cells are transferred from high light to low light needs to be 

explored. 

With the development of synthetic biology, advanced 

technology, including artificial design, could be used to build 

an LHCSR scaffold with high catalytic activity efficiency. 

Meanwhile, synthetic promoters are also helpful for the 

precise regulation of LHCSR expression in response to 

environmental stress. Thus, specific strains could be 

developed with the LHCSR module being assembled to fulfil 

the requirements of practical application. 

9. Conclusion 

Excessive light is harmful to plants. This paper mainly 

introduces the involvement of Chlamydomonas LHCSRs 

in NPQ to consume excessive light energy to protect cells. 

Meanwhile, LHCSRs are also involved in other types of 

environmental stress. Therefore, this paper further 

reviewed the potential interaction factors and upstream 

regulatory factors of LHCSRs in Chlamydomonas and 

explored the potential mechanisms of LHCSRs in 

adaptation to various environmental stresses. By 

discussing the evolution of LHCSRs in green algae and 

mosses, we found that LHCSRs play an important role in 

plant adaptation to environmental changes on Earth. 

Future studies on LHCSRs could focus on the 

corresponding and regulatory mechanism of LHCSRs to 

other kinds of stress and apply it to synthetic biology to 

improve the resilience of food crops. 
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